Product Description

Product Name Metal bellow coupling
Material Aluminum 
Type BC16-82
Structure  1 shaft ( 1 / 1a / 1b ) with bore
Bore size  4-42 mm
Weight  About 8-1200G g / pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Contribution of Beam Couplings to Dampening Vibrations and Reducing Resonance

Beam couplings play a significant role in dampening vibrations and reducing resonance in motion control systems. Their unique design and material properties contribute to this effect in the following ways:

  • Helical Beam Design:

    Beam couplings consist of helical beams that provide flexibility and torsional elasticity. When subjected to vibrations or dynamic loads, the helical beams can absorb and dampen these oscillations. The ability to flex and twist helps in dissipating vibrational energy and preventing it from propagating through the system.

  • Vibration Absorption:

    Beam couplings are designed to be relatively compliant, which allows them to absorb vibrations and shocks generated during operation. This absorption capability is especially beneficial when dealing with high-speed applications or systems with rapid accelerations and decelerations.

  • Reduced Resonance:

    Resonance occurs when the natural frequency of a system matches the frequency of external vibrations or disturbances. This phenomenon can lead to excessive vibration amplitudes, potentially causing damage or affecting the system’s performance. Beam couplings’ torsional elasticity helps to mitigate the risk of resonance by altering the system’s natural frequency, reducing the likelihood of resonance occurring within the operating range.

  • Material Selection:

    The choice of materials for beam couplings also contributes to their ability to dampen vibrations. Materials with good damping characteristics, such as certain alloys or elastomers, are commonly used to manufacture beam couplings. These materials can dissipate vibrational energy as heat, minimizing the transmission of vibrations to other system components.

  • Shock Absorption:

    In addition to dampening vibrations, beam couplings can absorb shocks or sudden impact loads. When the system experiences sudden changes in load or abrupt movements, the flexible nature of beam couplings helps to cushion and distribute the shock, protecting the machinery and reducing stress on the connected components.

Overall, the combination of the helical beam design, vibration absorption properties, reduced resonance, and appropriate material selection makes beam couplings effective in dampening vibrations and enhancing the overall stability and performance of motion control systems. When properly selected and installed, beam couplings can contribute to smoother and quieter operation, increased system reliability, and reduced wear and tear on critical components.

clamp coupling

Beam Couplings for Specific Industries and Specialized Applications

Yes, there are beam couplings specifically designed to meet the unique requirements of various industries and specialized applications. Manufacturers offer a wide range of beam coupling options with different materials, designs, and features tailored to specific use cases. Here are some examples of beam couplings designed for specific industries and applications:

  • Food and Beverage Industry:

    Beam couplings used in the food and beverage industry are typically made from stainless steel or food-grade materials to meet strict hygiene standards. These couplings are resistant to corrosion, easy to clean, and comply with FDA and USDA regulations. They are commonly found in conveyor systems, packaging equipment, and food processing machinery.

  • Medical and Pharmaceutical Industry:

    Beam couplings used in medical and pharmaceutical applications are designed to meet stringent cleanliness and precision requirements. They are often made from materials like stainless steel or plastic, ensuring biocompatibility and resistance to sterilization processes. These couplings are used in medical robots, imaging equipment, and precision medical devices.

  • Aerospace and Defense Industry:

    Beam couplings for aerospace and defense applications must withstand extreme environments, high accelerations, and vibrations. They are commonly made from lightweight yet strong materials like aluminum or high-performance alloys. These couplings are used in aircraft control systems, satellite components, and defense equipment.

  • Robotics:

    Beam couplings used in robotics require high torsional stiffness and low inertia to optimize robotic performance. They are often made from materials like aluminum or carbon fiber. These couplings are used in robotic joints and end-effectors to achieve precise and rapid motion.

  • Automotive Industry:

    Beam couplings in the automotive industry need to handle high torque loads and provide reliable power transmission. They are commonly made from steel or aluminum to balance strength and weight. These couplings are used in automotive steering systems, transmissions, and engine components.

  • Renewable Energy:

    Beam couplings used in renewable energy applications, such as wind turbines and solar tracking systems, are designed to withstand harsh environmental conditions and provide precise motion control. They are often made from materials with good corrosion resistance. These couplings help optimize energy production and enhance system efficiency.

Additionally, there are beam couplings designed for specialized applications, such as vacuum environments, cleanrooms, or underwater operations. These couplings have specific features to address the challenges of their respective applications, ensuring reliable performance in their intended environments.

Manufacturers of beam couplings offer a wide selection of standard and custom designs to cater to the diverse needs of different industries and specialized applications. When choosing a beam coupling, it’s essential to consider the specific requirements of the application to ensure optimal performance and longevity.

clamp coupling

Advantages of Using Beam Couplings in Precision Positioning Systems

Beam couplings offer several advantages when used in precision positioning systems. These advantages make them a popular choice for applications that demand accurate motion control and positioning. Here are the key benefits of using beam couplings in precision positioning systems:

  • 1. Misalignment Compensation:

    Beam couplings are designed to provide flexible connections between shafts, allowing them to compensate for various types of misalignment, including angular, axial, and parallel misalignment. In precision positioning systems, where accurate alignment is critical for maintaining positioning accuracy, beam couplings help prevent unnecessary stress on the components caused by misalignment, reducing wear and ensuring consistent performance.

  • 2. Torsional Rigidity:

    Beam couplings offer high torsional rigidity, meaning they effectively transmit torque without significant torsional deformation. This rigidity is essential for maintaining precise motion control and minimizing backlash in precision positioning systems. It ensures that the desired position is accurately maintained without undue twisting or torsional deflection.

  • 3. Low Inertia:

    Beam couplings have a compact and lightweight design, resulting in low rotational inertia. Low inertia is crucial in precision positioning systems, as it allows for rapid and accurate changes in direction and speed. The low inertia of beam couplings helps improve the system’s response time and overall dynamic performance.

  • 4. Zero Backlash:

    Beam couplings can provide backlash-free performance when correctly installed and utilized within their specified torque and speed ratings. This characteristic is particularly valuable in precision positioning systems, where any play or backlash can result in position errors and reduced accuracy.

  • 5. Vibration Dampening:

    Beam couplings exhibit some degree of vibration dampening due to their flexible design. This feature is beneficial in precision positioning systems, where damping vibrations can reduce mechanical resonances, improve stability, and minimize settling times, resulting in smoother and more precise motion.

  • 6. Long Service Life:

    High-quality beam couplings made from durable materials have excellent resistance to wear and fatigue. With proper installation and maintenance, beam couplings can have a long service life, providing reliable and consistent performance in precision positioning systems.

  • 7. Easy Installation:

    Beam couplings are relatively easy to install and do not require elaborate alignment procedures. Their flexible design allows for some misalignment tolerance during installation, making the setup process more straightforward and efficient.

  • 8. Cost-Effective:

    Beam couplings offer an excellent balance of performance and cost-effectiveness. Compared to some other types of precision couplings, beam couplings often provide a more budget-friendly solution without compromising on essential performance characteristics.

In summary, beam couplings offer significant advantages in precision positioning systems, including misalignment compensation, torsional rigidity, low inertia, zero backlash, vibration dampening, long service life, easy installation, and cost-effectiveness. These advantages contribute to the overall accuracy, stability, and reliability of precision motion control applications, making beam couplings a popular choice for demanding positioning tasks.

China Custom Hot Sale Mighty Aluminum Beam/Rigid Coupling CNC Flexible Jaw Plum Coupling with Red Rubber  China Custom Hot Sale Mighty Aluminum Beam/Rigid Coupling CNC Flexible Jaw Plum Coupling with Red Rubber
editor by CX 2024-03-27